4 research departments
750 employees
45 nationalities
55 research teams
16 ERC laureates
260 publications per year
24000 m² lab area

Support us through

Fondation universite de Strasbourg

Key figures 2018

8 congresses, workshops and meetings
3 special seminars
0 internal seminars
31 thesis

Archives

Quick Links

Seminar

Nuclear Pore Complex: simple biophysics of a complex biomachine

Pr Anton ZILMAN
Department of Physics and Institute for Biomaterials and Biomedical Engineering, Toronto, Canada

Wednesday, April 24th 2019 - 10 a.m. - Conference room E1031, CBI
Hosted by M. Mendoza team

Nuclear Pore Complex (NPC) is a biomolecular “nanomachine” that controls nucleocytoplasmic transport in eukaryotic cells, and is operation is central for a multitude of health and disease processes in the cell. The key component of the functional architecture of the NPC is the assembly of the intrinsically disordered proteins that line its passageway and play a central role in the NPC transport mechanism. Due to the unstructured nature of the proteins in the NPC passageway, it does not possess a molecular “gate” that transitions from an open to a closed state during translocation of individual cargoes. Rather, its passageway is crowded with multiple transport proteins carrying different cargoes in both directions. It remains unclear how the NPC maintains selective and efficient bi-directional transport under such crowded conditions. Remarkably, although the molecular conservation of the NPC components is low, its physical transport mechanism appears to be universal across eukaryotes – from yeast to humans.

Due to the paucity of experimental methods capable to directly probe the internal morphology and the dynamics of NPCs, much of our knowledge about its properties derives from in vitro experiments interpreted through theoretical and computational modeling. I will present the current understanding of the Nuclear Pore Complex structure and function arising from the analysis of in vitro and in vivo experimental data in light of minimal complexity models relying on the statistical physics of molecular assemblies on the nanoscale.

 

Imprimer Envoyer

Université de Strasbourg
INSERM
CNRS

IGBMC - CNRS UMR 7104 - Inserm U 1258
1 rue Laurent Fries / BP 10142 / 67404 Illkirch CEDEX / France Tél +33 (0)3 88 65 32 00 / Fax +33 (0)3 88 65 32 01 / directeur.igbmc@igbmc.fr